

Product Specification

200GBASE-SR4 QSFP56 Finisar® Optical Transceiver Module

FTCC8612E1PCM

PRODUCT FEATURES

- Four-channel full-duplex transceiver module
- Hot-pluggable QSFP56 form factor
- Supports 212.5Gb/s aggregate bit rate
- Maximum link length of 100m on OM4 Multimode Fiber
- 200GAUI-4 C2M electrical interface (4x50Gb/s PAM4 retimed)
- 4x50Gb/s PAM4 VCSEL transmitter
- Maximum power dissipation: 5.5W
- RoHS-6 compliant
- Operating case temperature range: 0 C to 70 C
- Single 3.3V power supply
- MPO-12 connector
- I2C management interface

APPLICATIONS

• 200G 100m on OM4 with FEC

Finisar® FTCC8612E1PCM 200G QSFP56 SR4 transceiver modules are designed for use in 200 Gigabit Ethernet interfaces over multi-mode fiber. They are compliant with the QSFP MSA¹ and portions of IEEE 802.3-2018⁵ and 802.3cd⁶. Digital diagnostics functions are available via the I2C interface, as specified by the CMIS 4.0⁴. The transceiver is RoHS compliant per Directive 2011/65/EU².

PRODUCT SELECTION

FTCC8612E1PCM

E: Ethernet protocol

P: Pull-tab type release

C: Commercial temperature range 0-70C

M: MPO connector

I. Pin Descriptions

QSFP56 pin-out as being defined by QSFP MSA¹.

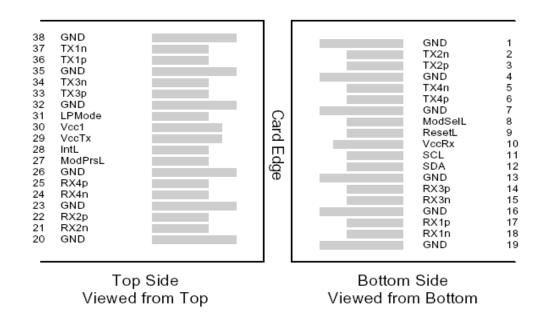


Figure 1 – QSFP-compliant 38-pin connector (per SFF-8679)

Pin	Symbol	Name/Description	Notes
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3 V Power supply receiver	
11	SCL	2-wire serial interface clock	
12	SDA	2-wire serial interface data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	

16	GND	Ground	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3 V Power supply transmitter	
30	Vcc1	+3.3 V Power Supply	
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

<u>Notes</u>

1. Circuit ground is internally isolated from chassis ground.

II. Absolute Maximum Ratings

Module performance is not guaranteed beyond the operating range (see Section VI). Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		3.6	V	
Storage Temperature	T_{S}	-40		85	°C	
Case Operating Temperature	T_{OP}	0		70	°C	1
Relative Humidity	RH	15		85	%	2
Receiver Damage Threshold, per Lane	P_{Rdmg}	5			dBm	

Notes:

- 1. 48-hour excursions, maximum
- 2. Non-condensing.

III. Electrical Characteristics (EOL, $T_{OP} = 0$ to +70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Supply Current	Icc			1.754	A	
Module total power	P			5.5	W	1
Transmitter						
Signaling rate per lane		26.5	$625 \pm 100 \text{ p}$	pm.	GBd	
Differential peak-peak input voltage tolerance	Vin,pp,diff	900			mV	2

Differential input return loss		Per equation (83E–5) IEEE802.3-2018		
Differential to common mode input return loss		Per equation (83E–6) IEEE802.3-2018		
Differential termination mismatch		10		
Module stress input test	Per 120I IEEE802			3
Single-ended voltage tolerance range	-0.4	3.3	V	
DC common mode voltage	-350	2850	mV	4
Receiver				
Signaling rate per lane	26.5625±1	100 ppm.	Gbd	
AC common-mode output voltage (RMS)		17.5	mV	
Differential peak-to-peak output voltage		900	mV	
Near-end ESMW (Eye symmetry mask width)	0.265		UI	
Near-end Eye height, differential (min)	70		mV	
Far-end ESMW (Eye symmetry mask width)	0.2		UI	
Far-end Eye height, differential (min)	30		mV	
Far-end pre-cursor ISI ratio	-4.5	2.5	%	
Differential output return loss		Per equation 83E-2 IEEE802.3-2018		
Common to differential mode conversion return loss		Per equation 83E-3 IEEE802.3-2018		
Differential termination mismatch		10	%	
Transition time (min, 20% to 80%)	9.5		ps	
DC common mode voltage	-350	2850	mV	4

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. With the exception to 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 3. Meets specified BER
- 4. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

IV. Optical Characteristics (EOL, $T_{OP} = 0$ to +70 °C, $V_{CC} = 3.135$ to 3.465 Volts) Meets 200GBASE-SR4 as being defined by IEEE P802.3cd

Parameter Ref. Symbol Min Typ Max Unit Transmitter Signaling rate (each lane (range) $26.5625 \pm 100 \text{ ppm}$ GBd PAM4 Modulation format 840 to 860 Lane wavelength (range) nm RMS spectral width 0.6 nm 1 Average launch power, each lane 4 dBm Average launch power, each lane -6.5 dBm Outer Optical Modulation Amplitude dBm 2 3 -4.5 (OMAouter), each lane Launch power in OMAouter minus dBm -5.9 TDECQ, each lane Transmitter and dispersion eye closure dB 4.5 for PAM4 (TDECQ), each lane $TDECQ - 10log_{10}(C_{eq})$, each lane 4.5 dB 3 Average launch power of OFF dBm -30 transmitter, each lane Extinction ratio 3 dΒ

Transmitter transition time, each lane		34	pS	
RIN ₁₂ OMA		-128	dB/Hz	
Optical return loss tolerance		12	dB	
Encircled flux	≥ 86% at 19µ	ım		4
Encircled flux	$\leq 30\%$ at 4.5			

Notes:

- 1. RMS spectral width is the standard deviation of the spectrum.
- 2. Even if the TDECQ < 1.4 dB, the OMAouter (min) must exceed this value.
- 3. C_{eq} is a coefficient defined in 121.8.5.3, which accounts for the reference equalizer noise enhancement.
- 4. If measured into type A1a.2 or type A1a.3, or A1a.4, 50 μm fiber, in accordance with IEC 61280-1-4.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Receiver						
Signaling rate (each lane (range)		20	6.5625 ± 100	ppm	GBd	
Modulation format			PAM4			
Lane wavelength (range)			840 to 860)	nm	
Damage threshold, each lane			5		dBm	1
Average receive power, each lane				4	dBm	
Average receive power, each lane		-8.4			dBm	2
Receive power (OMAouter), each lane				3	dBm	
Receiver reflectance				-12	dB	
Receiver sensitivity (OMAouter), each				Equation	dBm	3
lane				(138–1)		
Stressed receiver sensitivity				-3.4	dBm	4
(OMAouter), each lane				-3.4		
Conditions of stressed receiver sensitivity	y test:					5
Stressed eye closure for PAM4			4.5		dB	
(SECQ), lane under test			4.5			
SECQ - 10log10(Ceq)f, each lane (max)		4.5			dB	6
OMAouter of each aggressor lane			3		dBm	
LOS De-Assert				-9	dBm	
LOS Assert		-30		-10	dBm	
LOS Hysteresis		0.5			dB	

Notes:

- 1. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level on one lane. The receiver does not have to operate correctly at this input power.
- Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 3. Receiver sensitivity is informative and is defined for a transmitter with a value of SECQ up to 4.5 dB (see figure 2 from IEEE 802.3cd clause 138)
- 4. Measured with conformance test signal at TP3 (see IEEE 802.3cd 138.8.10) for the BER of 2.4E-4.
- 5. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver
- 6. Ceq is a coefficient defined in 121.8.5.3, which accounts for the reference equalizer noise enhancement.

138.8.9 Receiver sensitivity

Receiver sensitivity is informative and is defined for a transmitter with a value of SECQ up to 4.5 dB. Receiver sensitivity should meet Equation (138–1), which is illustrated in Figure 138–4.

$$RS = \max(-6.5, SECQ - 7.9)$$
 (dBm) (138–1)

where

RS is the receiver sensitivity

SECQ is the SECQ of the transmitter used to measure the receiver sensitivity

The normative requirement for receivers is stressed receiver sensitivity.

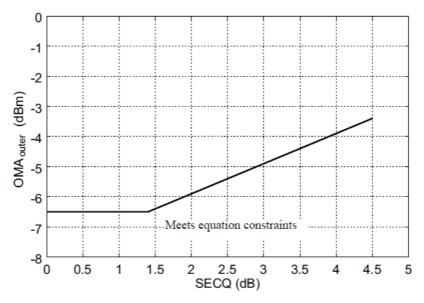


Figure 138-4-Illustration of receiver sensitivity

Figure 2 – Receiver sensitivity (per IEEE 802.3cd)

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate (all wavelengths combin	ned) BR			212.5	Gb/s	1
Bit Error Ratio	BER			2.4E-4		2
Maximum Supported Distance	s					
Fiber Type						
OM3 MMF	Lmax1			70	m	
OM4 MMF	Lmax2			100		

Notes:

- 1. Supports 200GBASE-SR4 per IEEE P802.3cd.
- 2. The typical BER is better than 1E-6 when Measured with a transmitter to produce SECQ up to 3dB.

VI. Environmental Specifications

Finisar® FTCC8612E1PCM QSFP56 SR4 transceivers have an operating case temperature range of 0 ${\mathbb C}$ to +70 ${\mathbb C}.$

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		+70	$\mathcal C$	
Storage Temperature	T_{sto}	-40		85	$\mathcal C$	

VII. Regulatory Compliance

Finisar® FTCC8612E1PCM QSFP56 SR4 transceivers are Class 1M Laser Products. They are certified per the following standards:

Feature	Agency	Standard	Certificate Number
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50	TBD
Laser Eye Safety	TÜV	EN 60825-1: 2007 IEC 60825-2: 2004+A1+A2	TBD
Electrical Safety	TÜV	EN 60950	TBD
Electrical Safety	UL/CSA	CLASS 3862.07 CLASS 3862.87	TBD

Copies of the referenced certificates are available at II-VI Incorporated upon request.

VIII. Digital Diagnostics Functions

FTCC8612E1PCM QSFP56 SR4 transceivers support the I2C-based diagnostics interface specified by the QSFP MSA¹.

IX. Memory Contents

Per CMIS 4.0^4 .

XI. Mechanical Specifications

Finisar® FTCC8612E1PCM QSFP56 SR4 transceivers are compatible with the QSFP MSA specification for QSFP pluggable form factor modules.

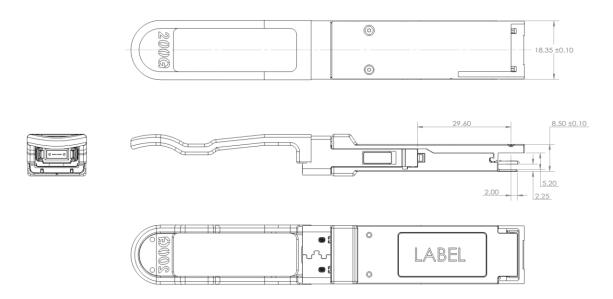


Figure 3. FTCC8612E1PCM Mechanical Dimensions

Figure 4. Standard Product Label (not to scale)

XII. References

- 1. SFF-8665: "QSFP+ 28Gb/s 4X Pluggable Transceiver Solution (QSFP28)", Rev 1.9, June 29, 2015 and associated SFF documents referenced therein:
 - i. SFF-8661
 - ii. SFF-8679
 - iii. SFF-8662
 - iv. SFF-8663
 - v. SFF-8672
 - vi. SFF-8472
- 2. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," July 1, 2011.
- 3. "Application Note AN-2038: Finisar Implementation Of RoHS Compliant Transceivers", January 21, 2005.
- 4. Common Management Interface Specification (CMIS) Rev 4.0.
- 5. IEEE P802.3-2018, 200GAUI-4 Interface.
- 6. IEEE P802.3cd

For More Information:

II-VI Incorporated 375 Saxonburg Boulevard Saxonburg, PA 16056 photonics.sales@ii-vi.com www.ii-vi.com