

Product Specification

400GBASE-SR4.2 QSFP-DD Optical Transceiver Module FTCD8633E1PCM

PRODUCT FEATURES

- Hot-pluggable QSFP-DD type 2 form factor
- Supports 425Gb/s aggregate bit rate
- Power dissipation < 9W
- RoHS compliant
- Case temperature range of 0°C to +70°C
- Single 3.3V power supply
- Maximum link length of up to 150m on OM5 Multimode Fiber (MMF)
- 8x50G PAM4 VCSEL transmitter
- 8x50G PAM4 retimed 400GUAI-8 electrical interface
- Parallel MPO receptacle
- I2C management interface

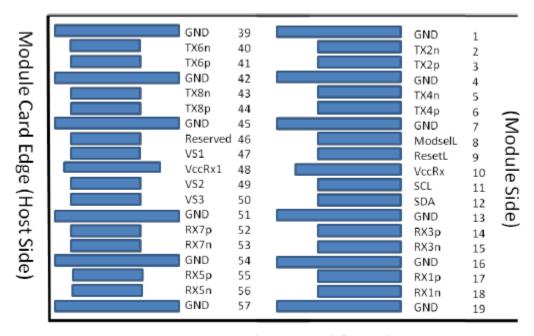
APPLICATIONS

- 400GBASE-SR4.2 applications with FEC
- Breakout applications to 4x 100GbE BiDi

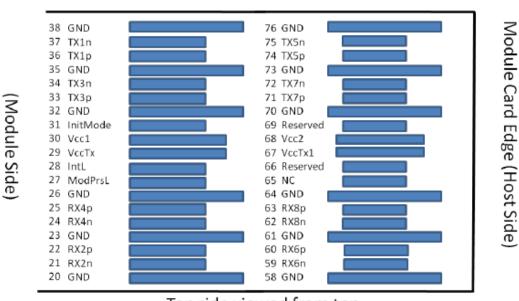
Finisar FTCD8633E1PCM 400GBASE-SR4.2 QSFP-DD transceiver modules are designed for use in 400 Gigabit Ethernet links on up to 150m of multi mode OM5 fiber. They are compliant with the QSFP-DD MSA¹, CMIS 4.0⁵, IEEE P802.3bs⁶ and IEEE P802.3 cm⁷. Digital diagnostic functions are available via the I2C interface, as specified by the CMIS 4.0⁵. The transceiver is RoHS-6 compliant per Directive 2011/65/EU4 and Application Note AN-2038⁴.

PRODUCT SELECTION

FTCD8633E1PCM


E: Ethernet protocol

P: Pull-tab type release


C: Commercial temperature range

M: MPO receptacle

I. Pin Descriptions

Bottom side viewed from bottom

Top side viewed from top

Figure 1 – QSFP-DD -compliant 76-pin connector (per QSFP-DD MSA)

Pad	Logic	Symbol	Description	Plug	Notes
				Sequence ⁴	_
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p Transmitter Non-Inverted Data Input		3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10	20112 1	VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS-	SCL	2-wire serial interface clock	3B	-
11	I/O	SCI	2-wire serial intellace clock	35	
12	LVCMOS-	SDA	2-wire serial interface data	3B	
12		SDA	2-wire serial interface data	35	
	I/0		<u> </u>		_
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rxlp	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rxln	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	-
22	CML-0	Rx2p	Receiver Non-Inverted Data Output	3B	
23	CHL-0	GND	Ground	1B	1
					1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	1B	1
27		ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3B	
29		VccTx	+3.3V Power supply transmitter	2B	2
30		Vccl	+3.3V Power supply	2B	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP	3B	
			applications, the InitMode pad is called		
			LPMODE		
32		GND	Ground	1B	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3B	_
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
	CHL-I		Ground Ground		,
35		GND		1B	1
36	CML-I	Txlp	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Txln	Transmitter Inverted Data Input	3B	_
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тибр	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	-
	CML-I				
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A	1
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VecRxl	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground	1A	1
55	CML-0	Rx5p	Receiver Non-Inverted Data Output	3A	_
55	CHIL-U	киор	veceivet woul-tuvetred hata outbut	JA	

56	CML-0	Rx5n	Receiver Inverted Data Output	3A			
57		GND	Ground	1A	1		
58		GND	Ground	1A	1		
59	CML-O	Rx6n	Receiver Inverted Data Output	3A			
60	CML-0	Rx6p	Receiver Non-Inverted Data Output	3A			
61		GND	Ground	1A	1		
62	CML-0	Rx8n	Receiver Inverted Data Output	3A			
63	CML-0	Rx8p	Receiver Non-Inverted Data Output	3A			
64		GND	Ground	1A	1		
65		NC	No Connect	3A	3		
66		Reserved	For future use	3A	3		
67		VccTxl	3.3V Power Supply	2A	2		
68		Vcc2	3.3V Power Supply	2A	2		
69		Reserved	For Future Use	3A	3		
70		GND	Ground	1A	1		
71	CML-I	Тх7р	Transmitter Non-Inverted Data Input	3A			
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A			
73		GND	Ground	1A	1		
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	3A			
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A			
76 GND Ground 1A 1							
Note	Note 1: QSFP-DD uses common ground (GND) for all signals and supply (power). All are						
			DD module and all module voltages are refer				

potential unless otherwise noted. Connect these directly to the host board signalcommon ground plane.

Note 2: VccRx, VccRx1, Vccl, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 4. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.

Note 3: All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100 pF.

Note 4: Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, followed by 3A, 3B.

II. **Absolute Maximum Ratings**

Module performance is not guaranteed beyond the operating range (see Section VI). Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	T_{S}	-40		+85	°C	
Case Operating Temperature	T_{OP}	0		+70	°C	
Relative Humidity	RH	15		85	%	1
Receiver Damage Threshold, per Lane	P_{Rdmg}	5			dBm	

Notes:

1. Non-condensing.

III. Electrical Characteristics (EOL, $T_{OP} = 0$ to +70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Supply Current	Icc			2.87	A	
Module total power	P			9	W	1
Transmitter						
Signaling rate per lane		26.5	5625± 100 p	pm.	Gbd	
Differential data input voltage per lane	Vin,pp,diff	900			mV	2
Differential input return loss			equation (83 EEE802.3br		dB	
Differential to common mode input return loss			equation (83 EEE802.3br		dB	
Differential termination mismatch				10	%	
Module stress input test			er 120E.3.4. EEE802.3b			3
Single-ended voltage tolerance range		-0.4		3.3	V	
DC common mode voltage		-350		2850	mV	4
Receiver						
Signaling rate per lane		26.5	6625± 100 p	pm.	Gbd	
AC common-mode output voltage (RMS)				17.5	mV	
Differential output voltage				900	mV	
Near-end ESMW (Eye symmetry mask width)		0.265			UI	
Near-end Eye height, differential (min)		70			mV	
Far-end ESMW (Eye symmetry mask width)		0.2			UI	
Far-end Eye height, differential (min)		30			mV	
Far-end pre-cursor ISI ratio		-4.5		2.5	%	
Differential output return loss			equation 83 EEE802.3br			
Common to differential mode		Per equation 83E-3				
conversion return loss		II	EEE802.3br			
Differential termination mismatch				10	%	
Transition time (min, 20% to 80%)		9.5			ps	
DC common mode voltage (min)		-350		2850	mV	4

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. With the exception to 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 3. Meets specified BER
- 4. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

IV. Optical Characteristics (EOL, $T_{OP} = 0$ to +70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling rate (each lane (range)		26	6.5625 ± 100	ppm	GBd	
Modulation format			PAM4			
Lance and the state of the stat	λ1	Tx_1, Tx_2	x ₃ , Tx ₅ , Tx ₇ 8	44 to 863		
Lane wavelength (range)	λ2	Tx_2, T	x4, Tx6, Tx8 9	00 to 918	nm	
RMS spectral width, each lane				0.6	nm	1
(Tx_1, Tx_3, Tx_5, Tx_7)				0.0	11111	1
RMS spectral width, each lane				0.65	nm	1
(Tx_2, Tx_4, Tx_6, Tx_8)				4	1D	
Average launch power, each lane		-6.2		4	dBm	
Outer Optical Modulation Amplitude		-4.2		3	dBm	2
(OMAouter), each lane				_		
Launch power in OMAouter minus		-5.6			dBm	
TDECQ, each lane					42111	
Transmitter and dispersion eye closure				4.5	dB	
for PAM4 (TDECQ), each lane				4.5	uБ	
$TDECQ - 10log_{10}(C_{eq})$, each lane				4.5	dB	3
Average launch power of OFF				-30	dBm	
transmitter, each lane				-30	UDIII	
Extinction ratio		3			dB	
Transmitter transition time, each lane				31	pS	
RIN ₁₂ OMA				-128	dB/Hz	
Optical return loss tolerance				12	dB	
F : 1 1 C		≥ 86% at 19µm				4
Encircled flux			$\leq 30\%$ at 4.5			4

Notes:

- 1. RMS spectral width is the standard deviation of the spectrum.
- 2. Even if the TDECQ < 1.4 dB, the OMAouter (min) must exceed this value.
- 3. C_{eq} is a coefficient defined in 121.8.5.3, which accounts for the reference equalizer noise enhancement.
- 4. If measured into type A1a.2 or type A1a.3, or A1a.4, 50 μm fiber, in accordance with IEC 61280-1-4.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Receiver						
Signaling rate (each lane (range)		26	6.5625 ± 10	0 ppm	GBd	
Modulation format			PAM4			
Lane wavelength (range)			x3, Rx5, Rx7 x4, Rx6, Rx8		nm	
Damage threshold, each lane			5		dBm	1
Average receive power, each lane		-8.2		4	dBm	2
Receive power (OMAouter), each lane				3	dBm	
Receiver reflectance				-12	dB	
Receiver sensitivity (OMAouter), each lane				max (-6.6, SECQ - 8)	dBm	3
Stressed receiver sensitivity (OMAouter), each lane				-3.5	dBm	4
Conditions of stressed receiver sensitivity	test (note 5))				
Stressed eye closure for PAM4 (SECQ), lane under test			4.5		dB	
SECQ – 10log10(<i>Ceq</i>)f, lane under test (max)		4.5			dB	6
OMAouter of each aggressor lane			3	•	dBm	
LOS De-Assert				-9.5	dBm	

LOS Assert	-30	-10.5	dBm	7
LOS Hysteresis	0.5		dB	

Notes:

- 1. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level on one lane. The receiver does not have to operate correctly at this input power.
- Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 3. Receiver sensitivity is informative and is defined for a transmitter with a value of SECQ up to 4.5 dB
- 4. Measured with conformance test signal at TP3 (see 138.8.10) for the BER specified in 138.1.1.
- 5. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.
- 6. Ceq is a coefficient defined in 121.8.5.3, which accounts for the reference equalizer noise enhancement.
- 7. RxLOS de-assert and assert is based on receiving average optical power (DC LOS).

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate (all wavelengths combined)	BR			425	Gb/s	1
Bit Error Ratio	BER			2.4E-4		2
Maximum Supported Distances						
Fiber Type						
OM3 MMF	Lmax1	0.5		70	m	
OM4 MMF	Lmax2	0.5		100	m	
OM5 MMF	Lmax3	0.5		150	m	

Notes:

- 1. Supports 400GBASE-SR4.2 per IEEE P802.3cm.
- 2. As defined by IEEE P802.3cm.

VI. Environmental Specifications

Finisar FTCD8633E1PCM 400GBASE-SR4.2 QSFP-DD transceivers have an operating case temperature range of 0° C to $+70^{\circ}$ C.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		+70	°C	
Storage Temperature	T_{sto}	-40		+85	°C	

VII. Regulatory Compliance

Finisar FTCD8633E1PCM 400GBASE-SR4.2 QSFP-DD transceivers are Class 1M Laser Products. They are certified per the following standards:

Feature	Agency	Standard
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50
Laser Eye Safety	TÜV	EN 60825-1: 2014 EN 60825-2: 2004+A1+A2
Electrical Safety	TÜV	EN 62368-1:2014
Electrical Safety	UL/CSA	CAN/CSA-C22.2 No. 62368-1-2014 UL 62368-1:2014

Copies of the referenced certificates are available at Coherent Corporation upon request.

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

VIII. Memory Map

Compatible with QSFP-DD CMIS rev 4.0⁵. Refer to Appendix A for detail.

IX. Mechanical Specifications

Finisar FTCD8633E1PCM SR4.2 QSFP-DD transceivers are compatible with the QSFP-DD Type 2 Specification for pluggable form factor modules.

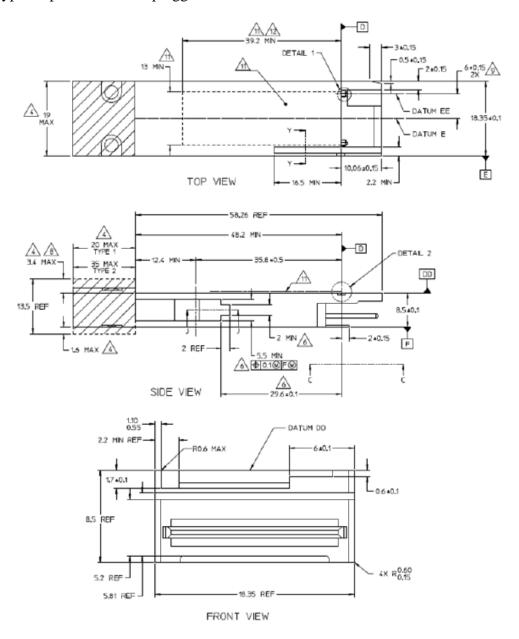


Figure 2. FTCD8633E1PCM Mechanical Dimensions.

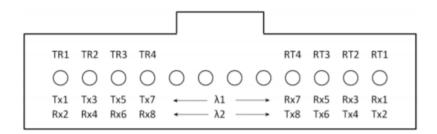


Figure 3. FTCD8633E1PCM MDI (Medium Dependent Interface) Requirements

Figure 4. Product Label (Not to scale)

X. References

- 1. QSFP-DD Hardware Specification for QSFP DOUBLE DENSITY 8X PLUGGABLE TRANSCEIVER Rev 5.0
- 2. SFF-8665: "QSFP+ 28Gb/s 4X Pluggable Transceiver Solution (QSFP28)", Rev 1.9, June 29, 2015 and associated SFF documents referenced therein:
 - i. SFF-8661
 - ii. SFF-8679
 - iii. SFF-8662
 - iv. SFF-8663
 - v. SFF-8672
- 3. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment" as well as Commission Delegated Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU. Certain products may use one or more exemptions as allowed by the Directive.
- 4. Application Note AN-2038: "Finisar Implementation of RoHS Compliant Transceivers".
- 5. Common Management Interface Specification (CMIS) Rev 4.0.
- 6. IEEE P802.3bs, 400GAUI-8 Interface.
- 7. IEEE P802.3cm.

XI. For More Information

Coherent Corp.
375 Saxonburg Boulevard
Saxonburg, PA 16056
sales@coherent.com
www.coherent.com